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Abstract.

A psesofeu is a graph each of whose connected components is a tre or a tree plus a edge; a

q~saw% psesdofrut of a gra& contains the greatest number of edges posible. This paper shows

that a umimum cast spaning peudoorust of a graph with ai vertices and in edges can be found in

0(nu + %s) time. This impfies that a minimum spsaning tree can be found in 0(m) time for graphs

with girth at lasnt logill for some constant i.
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1. Introduction.

A pansdovee is a connected graph with equal number of vertices and edges, i.e., a tree plus

an edge creating a cycle. A psndofei is a graph each of whose connected components has at

least as any vertices as edges, ie., each component is a tree or a pseudotree. Pseudoorests

arise in many applications although the termiology is not standard. We use the terminology

of [PQJ, which usespsuo mto compute the dniyand arboicity of agraph;,a seWJ for

refinements of this approach. Pseudotrees afe essentially the 1-tree used in IHI1 to solve the

traveling salesman problem. The directed version of a pseudoforest is called a fmnctioal grph in

[Be], since it corresponds to the graph of a fiite function. For this reason pseudoforests commonly
arise in parallel processing, when ea&h processor chooses a successor (e.g., [0 PS)). The pseudoforests

of a graph form the bi circular mavii, which is important in the study of rigidity of bar-and-body

-J frameworks [WW). In the problem of minimum cost network Blow with losse and gains ILI, a linear

programming basis is a pseudoforest ID]. A pseudotree is also called a uaicyclic grspA [e.g., MHJ.

With these applications ais motivation we propose the mi,,i'num .pes. ng paeudofoesrt problem:

Consider a graph G with s vertices and m edges. A pseudoforest #paw G if it has the greatest

posble umber of edges. Assume every edge e has a reail-valued cost c(e). Te cotof a st of

edges is the sum of all its edge costs. A m inimvm saening paeudoferwet has the smallst cost

possible. This paper presents an algoritm to find such a pseuidoforest in time O(m + ai).

T1he pseudoforest problem relates to finding a minimum spanning tree. The best-known time

for finding a minimumn spanning tree is 0(rnlog P(rna)) (GGSTJ, where

P(m, 8) - minjij log(i) a r/R).

Here log denotes logarithm base two, and W1e' a is the i~ trtdlgrtm eie ylg 0

alogYs+') i Mlog(log') a). Note Caif m/n 2 log tol nfor some constant i then #(m, a) : , so

te time to find a inimeyum spanning tree is 0(m). This paper preents a related result: Nf a graph

hsgirth at least log(O a for some astant i then a ominimum, spanning tree can be found in 0(m)

0, V(G) and E(G) denote its vertex set and edge set, respectiviely. Hence for the given grap G,

amV(G)Iandrmn=lE(G)l. An edge eamis ideto asubpaph Zifme or both endsisin V(H)

but e E(H).



A tree (ssdotee) compose of a graph is camcted component of G that is a tree

(pseudotree). A spanig pseudoforest P for a pgaph G consists of every tree omponent of G, Phu

for every other connected component C of G, one or more pseudotree components that partition

V(C). Not that Pcontains ema (Cl edges of C.

The set mev'm problem M is to maintain a collection of disjoint sets which, after initialization,

is mabject to two operatio:

*e(S, S')- form a new met S U S', thereby destroying sets S and S';

Jis4e)- return the name of the set containing element e.

The set merging algorithm used in Section 2 is %mni by ir. It represents each met S by a snion

tree, ie., a tree whose nodes are the elements of S. A site makes the root of the smaller union tree

a child of the root of the larger. An operation jiAv) is done by following the path in the union

tree from V to the root. (No path compression done). Bence a unie operation is O(l) time and

li*(e) is O(log s), where s is the sie of the at containing .

In this paper a priority Ieuv is a data structure on a univeuse that is partitioned into disjoint

quev, where each element has a real-valued coA and after initialization the following operadons

can be performed:

meldQ, Q')- form a new queue by cmbinin Q and Q', thereby destroying queues
fla.inis(-- rurnt smallest cost element in queue Q;

delete(e,Q)- mmve element e from queue Q.

The algorithm used in Section 2 implements priority queues with Fiomacci heaps [FT]. The follow-

ing urne bounds hol: w in 0(l); fiL.min(Q) is O(log a), where a is the size of Q; delete(e,Q)

is O(log s), where s is the size of the Fioomacci tree containing e. Note these are amortized time

bounds. Also to achieve the bound for delete the algorithm of IFT] is modified slightly, making

it lazier. Unlike IFT a que e does not keep track of its minimum element. Rather fid.min(Q)

links trees of Q until there i at mos one tree of each rank, and then finds and returns the desired

minimum. delete(e,Q) cuts e from its parent and Wdds the children of e to the list of trees of Q.
The analysis of [FT' easily xtends to prove the above time bounds. (The same time bounds can

be achieved using binomial queues 1Br modified to do lazy aeding).

2. The algorithm.

The algorithm is based on a locality property similar to one possesed by minimum spanin

tisTm. I2I
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Lemma 2.1. Let P be a subgraph of a minimum spanning peudoforest. Let e be a smallest cost

edge incident to some tree component T of P. Then P + e is a subgraph of a minimum spanning

pmudoforest.

Proof. Let P be a minimum spanning pseudoforest containing P, and suppose Pe does not

conain e. Let f be an edge of P tha is incident to T suds tha the component of P - f

cotaining T is a tree (Speifcaly if T is in a tree component of P then f is an edge of P incident

to T; if T is in a pseudotre component with cycle C, then f is an edge of P incident to T on C

or on the path from T to C). By definition, e(e) <c(f). Hence PO - f + e is the dired minimum

--- . I

The algorithm enlarges a subgraph P to a minimum spanning peudoorue For efficiency it

grows the components of P at approximately the same rate. More precisely let d(v) denote the

degree d vertex 9 in the given graph G; the (totd) dqre of a subgraph H is (d(v)i eE V(H)).

The algorithm grows components so that they have similar degre. The details are a follows.

The algorithm initializes P to contain every vertex v of G (9 is initially a tree component of

P). It then repeats the flowing step a long a P contains a tree component with an incident

edge:

Entarial Step. Choose a tree component T of smallest degree and add to P a midnimum cost edge

incident to T.

Correctness of this algorithm follows from the lemma; clearly pseudo"ot P spans G when

the algorithm halts.
The enlug step is implemented with the following data structures. A set merging data

structure maintains the partition of V(G) induced by the components of P. Each component d P

is maked ae a tree or peeudotree. Each tree component T maitains its degree d(T), and a priority

queue of incident edges Q(T), orded by cat. An edge can be in two priority queues, in which

cue the two occurrences an linked by pointers. There is an array C[l..2mj, where C(dj points to

a doubly-linked list of all tree components o degree d with an incident edge.
U,

With this data tructur the elarging step works as foows- The outermost loop ami.
the entrim in C in increuing order to find the next smallest tree component T. T is removed

from its C-list. The smallest edge e in Q(T) is obtained using find.miL The set merging data
structure fink the two components containing the ends of e, say T and S. If S = T it is marked

3
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a pseudotree. If S # T then sets V(S) and V(T) are uted, further if S is a tree it is deleted

from its C-lst, e is deleted from Q(S) and Q(T), these queues are melded, the new tree component
S U T gets degree 6 = d(s) + d(t) and is added to the list C[61 if its queue is nonempty. Finally in
al cases, e is added to P.

To estimate the time, note that all initialization us O(m+n) time. Th time for all enlarging
step, excluding priority queue finL-miss and deletes ad set merging finds, is O(m+n). To estimate
the time for find-miu, deletes and finds, define the rank of a component C as

f(C) W Llod(C).

A simple induction shows that when T is chosen in the enlarging step, the size of any Fibonacci tree

is at most d(T) (recall that Jindmin is the only operation that enlarges Fibonacci trees; initially

every edge is in its own Fibonacci tree). A similar induction shows that when T is chosen the
height of the union tree for any component C is at most min{r(C), 1 + r(T)) (since T's height is at

most r(T)). Thus the find-min, find and two delete, for T take time O(log d(T) + r(T)) - O(r(T)).

Let T (r) denote the set of all rank r tree components chosen as T in the enlarging step. Then the
total find.min, delete and find time is at most a constant times

ijT (,)j."

For any rank r, any edge is counted in the degree o at most two tre. of T (r) (since the enlarging

step unites T into a pseudotree or increases the rank of the component containing T). Hence
E{d(T)IT e T(r)) _< 2m. Any T e T(r) has d(T) > 2. Thus IT(r)1 < m/2 '. This implies the
total time is at most a constant times E o rm/2-1 = O(m).

I
Theorem 2.1. A minimum spaing peudofiest can be found in time O(m + n). F.

Now we turn to the minimum spning tree problem. Let P be a minimum spanning pseudo-
forest. Ibrmas t C by choosg a maximum etdge from each cle of P.

Lemma 2.2. P - C i a su= h of a minimum spanning tree.

Prod. LetTbeaminimumsp anngtree ithmmsanyedgesdPaposible. SupposeP-C
s not a su aph of T. Let Q be a componment d (P - C) l T that is not a compoent of P - C;

oe Qso it not incidet to m edge of C. Let e be an edge of P incident to Q mich that the
compm t d P - e comtaining Q is a tree (e i found in Lemma 2.1). Let f be an edge incident

4
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to Q in the fundamental cyle of e in T (f s since e TU C). Then P - e + f is a spanning

pecuddorest, whence e(e) <_ c(f). T - f + e is a spanning tree containing more edges of P than T,

whence c(f) < c(e). Ihis contradiction pro,. the lemma. I

The lemma justifies the following minimum spanning tree algorithm. Find a minimum spanning

pseudlorest P. Form the forest F by deleting a maximum cost edge fom each cycle of P; form

the graph G' by contracting each tree of F to avertex. Find a minimum spanning tree T of G'.

Now TU F is a minimum spanning tree of G.

This algorithn improves the bound for minimum spanning trees in the following special case.

For the improvement it suffices to find T using the minimum spanning tree algorithm of [FT, which

uses time O(mP(m, a)) but is slightly simpler than [GGSTI. Recall the pirth of a graph is the

length of a shortest cycle [HJ.

Theorem 2.2. Let G be a graph with girth g log( n for some constant i. Then a minimum

spanning tree of G can be found in time 0(m).

Proof. Except for finding T, the algorithm m linear time. Let n' = IV(G')I, m' = E(G),

so T is found in time O(m'(m', n')). Cleady n' < n/l and m' <i m. Note that m#(m, n) is an

increasing function of m (since P(m, n) :S n and P(m + 1,n) 2_ P(m,n)- 1). Hence m'p(m',n') <,

m/#(m, n) < m(m, n/j). Since m 2 n, ,O(m, n/#) <5 #(n, n/g) <. (sg, it). Since g -> log(')n, k

P(ng, n) _ i by defnition.T isgives the theorem. I

In conclusion, a minimum spanning tree can be found in linar time if the graph has density

or girth at lear log(') n. Ts narrow the open cow down to graphs that are extremely spanse.
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